9.17. Range Types

9.17.1. Built-in Range Types
9.17.2. Examples
9.17.3. Inclusive and Exclusive Bounds
9.17.4. Infinite (Unbounded) Ranges
9.17.5. Range Input/Output
9.17.6. Constructing Ranges
9.17.7. Discrete Range Types
9.17.8. Defining New Range Types
9.17.9. Indexing

Range types are data types representing a range of values of some element type (called the range's subtype). For instance, ranges of timestamp might be used to represent the ranges of time that a meeting room is reserved. In this case the data type is tsrange (short for timestamp range), and timestamp is the subtype. The subtype must have a total order so that it is well-defined whether element values are within, before, or after a range of values.

Range types are useful because they represent many element values in a single range value, and because concepts such as overlapping ranges can be expressed clearly. The use of time and date ranges for scheduling purposes is the clearest example; but price ranges, measurement ranges from an instrument, and so forth can also be useful.

9.17.1. Built-in Range Types

LightDB comes with the following built-in range types:

  • int4range — Range of integer

  • int8range — Range of bigint

  • numrange — Range of numeric

  • tsrange — Range of timestamp without time zone

  • tstzrange — Range of timestamp with time zone

  • daterange — Range of date

In addition, you can define your own range types; see CREATE TYPE for more information.

9.17.2. Examples

CREATE TABLE reservation (room int, during tsrange);
INSERT INTO reservation VALUES
    (1108, '[2010-01-01 14:30, 2010-01-01 15:30)');

-- Containment
SELECT int4range(10, 20) @> 3;

-- Overlaps
SELECT numrange(11.1, 22.2) && numrange(20.0, 30.0);

-- Extract the upper bound
SELECT upper(int8range(15, 25));

-- Compute the intersection
SELECT int4range(10, 20) * int4range(15, 25);

-- Is the range empty?
SELECT isempty(numrange(1, 5));

See Table 10.54 and Table 10.55 for complete lists of operators and functions on range types.

9.17.3. Inclusive and Exclusive Bounds

Every non-empty range has two bounds, the lower bound and the upper bound. All points between these values are included in the range. An inclusive bound means that the boundary point itself is included in the range as well, while an exclusive bound means that the boundary point is not included in the range.

In the text form of a range, an inclusive lower bound is represented by [ while an exclusive lower bound is represented by (. Likewise, an inclusive upper bound is represented by ], while an exclusive upper bound is represented by ). (See Section 9.17.5 for more details.)

The functions lower_inc and upper_inc test the inclusivity of the lower and upper bounds of a range value, respectively.

9.17.4. Infinite (Unbounded) Ranges

The lower bound of a range can be omitted, meaning that all values less than the upper bound are included in the range, e.g., (,3]. Likewise, if the upper bound of the range is omitted, then all values greater than the lower bound are included in the range. If both lower and upper bounds are omitted, all values of the element type are considered to be in the range. Specifying a missing bound as inclusive is automatically converted to exclusive, e.g., [,] is converted to (,). You can think of these missing values as +/-infinity, but they are special range type values and are considered to be beyond any range element type's +/-infinity values.

Element types that have the notion of infinity can use them as explicit bound values. For example, with timestamp ranges, [today,infinity) excludes the special timestamp value infinity, while [today,infinity] include it, as does [today,) and [today,].

The functions lower_inf and upper_inf test for infinite lower and upper bounds of a range, respectively.

9.17.5. Range Input/Output

The input for a range value must follow one of the following patterns:

(lower-bound,upper-bound)
(lower-bound,upper-bound]
[lower-bound,upper-bound)
[lower-bound,upper-bound]
empty

The parentheses or brackets indicate whether the lower and upper bounds are exclusive or inclusive, as described previously. Notice that the final pattern is empty, which represents an empty range (a range that contains no points).

The lower-bound may be either a string that is valid input for the subtype, or empty to indicate no lower bound. Likewise, upper-bound may be either a string that is valid input for the subtype, or empty to indicate no upper bound.

Each bound value can be quoted using " (double quote) characters. This is necessary if the bound value contains parentheses, brackets, commas, double quotes, or backslashes, since these characters would otherwise be taken as part of the range syntax. To put a double quote or backslash in a quoted bound value, precede it with a backslash. (Also, a pair of double quotes within a double-quoted bound value is taken to represent a double quote character, analogously to the rules for single quotes in SQL literal strings.) Alternatively, you can avoid quoting and use backslash-escaping to protect all data characters that would otherwise be taken as range syntax. Also, to write a bound value that is an empty string, write "", since writing nothing means an infinite bound.

Whitespace is allowed before and after the range value, but any whitespace between the parentheses or brackets is taken as part of the lower or upper bound value. (Depending on the element type, it might or might not be significant.)

Note

These rules are very similar to those for writing field values in composite-type literals. See Section 9.16.6 for additional commentary.

Examples:

-- includes 3, does not include 7, and does include all points in between
SELECT '[3,7)'::int4range;

-- does not include either 3 or 7, but includes all points in between
SELECT '(3,7)'::int4range;

-- includes only the single point 4
SELECT '[4,4]'::int4range;

-- includes no points (and will be normalized to 'empty')
SELECT '[4,4)'::int4range;

9.17.6. Constructing Ranges

Each range type has a constructor function with the same name as the range type. Using the constructor function is frequently more convenient than writing a range literal constant, since it avoids the need for extra quoting of the bound values. The constructor function accepts two or three arguments. The two-argument form constructs a range in standard form (lower bound inclusive, upper bound exclusive), while the three-argument form constructs a range with bounds of the form specified by the third argument. The third argument must be one of the strings (), (], [), or []. For example:

-- The full form is: lower bound, upper bound, and text argument indicating
-- inclusivity/exclusivity of bounds.
SELECT numrange(1.0, 14.0, '(]');

-- If the third argument is omitted, '[)' is assumed.
SELECT numrange(1.0, 14.0);

-- Although '(]' is specified here, on display the value will be converted to
-- canonical form, since int8range is a discrete range type (see below).
SELECT int8range(1, 14, '(]');

-- Using NULL for either bound causes the range to be unbounded on that side.
SELECT numrange(NULL, 2.2);

9.17.7. Discrete Range Types

A discrete range is one whose element type has a well-defined step, such as integer or date. In these types two elements can be said to be adjacent, when there are no valid values between them. This contrasts with continuous ranges, where it's always (or almost always) possible to identify other element values between two given values. For example, a range over the numeric type is continuous, as is a range over timestamp. (Even though timestamp has limited precision, and so could theoretically be treated as discrete, it's better to consider it continuous since the step size is normally not of interest.)

Another way to think about a discrete range type is that there is a clear idea of a next or previous value for each element value. Knowing that, it is possible to convert between inclusive and exclusive representations of a range's bounds, by choosing the next or previous element value instead of the one originally given. For example, in an integer range type [4,8] and (3,9) denote the same set of values; but this would not be so for a range over numeric.

A discrete range type should have a canonicalization function that is aware of the desired step size for the element type. The canonicalization function is charged with converting equivalent values of the range type to have identical representations, in particular consistently inclusive or exclusive bounds. If a canonicalization function is not specified, then ranges with different formatting will always be treated as unequal, even though they might represent the same set of values in reality.

The built-in range types int4range, int8range, and daterange all use a canonical form that includes the lower bound and excludes the upper bound; that is, [). User-defined range types can use other conventions, however.

9.17.8. Defining New Range Types

Users can define their own range types. The most common reason to do this is to use ranges over subtypes not provided among the built-in range types. For example, to define a new range type of subtype float8:

CREATE TYPE floatrange AS RANGE (
    subtype = float8,
    subtype_diff = float8mi
);

SELECT '[1.234, 5.678]'::floatrange;

Because float8 has no meaningful step, we do not define a canonicalization function in this example.

Defining your own range type also allows you to specify a different subtype B-tree operator class or collation to use, so as to change the sort ordering that determines which values fall into a given range.

If the subtype is considered to have discrete rather than continuous values, the CREATE TYPE command should specify a canonical function. The canonicalization function takes an input range value, and must return an equivalent range value that may have different bounds and formatting. The canonical output for two ranges that represent the same set of values, for example the integer ranges [1, 7] and [1, 8), must be identical. It doesn't matter which representation you choose to be the canonical one, so long as two equivalent values with different formattings are always mapped to the same value with the same formatting. In addition to adjusting the inclusive/exclusive bounds format, a canonicalization function might round off boundary values, in case the desired step size is larger than what the subtype is capable of storing. For instance, a range type over timestamp could be defined to have a step size of an hour, in which case the canonicalization function would need to round off bounds that weren't a multiple of an hour, or perhaps throw an error instead.

A less-oversimplified example of a subtype_diff function is:

CREATE FUNCTION time_subtype_diff(x time, y time) RETURNS float8 AS
'SELECT EXTRACT(EPOCH FROM (x - y))' LANGUAGE sql STRICT IMMUTABLE;

CREATE TYPE timerange AS RANGE (
    subtype = time,
    subtype_diff = time_subtype_diff
);

SELECT '[11:10, 23:00]'::timerange;

See CREATE TYPE for more information about creating range types.

9.17.9. Indexing

B-tree and hash indexes can be created for table columns of range types. For these index types, basically the only useful range operation is equality. There is a B-tree sort ordering defined for range values, with corresponding < and > operators, but the ordering is rather arbitrary and not usually useful in the real world. Range types' B-tree and hash support is primarily meant to allow sorting and hashing internally in queries, rather than creation of actual indexes.