Before you can do anything, you must initialize a database storage
area on disk. We call this a database instance.
(The SQL standard uses the term catalog cluster.) A
database instance is a collection of databases that is managed by a
single instance of a running database server. After initialization, a
database instance will contain a database named postgres
,
which is meant as a default database for use by utilities, users and third
party applications. The database server itself does not require the
postgres
database to exist, but many external utility
programs assume it exists. Another database created within each cluster
during initialization is called
template1
. As the name suggests, this will be used
as a template for subsequently created databases; it should not be
used for actual work. (See Chapter 21 for
information about creating new databases within a cluster.)
In file system terms, a database instance is a single directory
under which all data will be stored. We call this the data
directory or data area. It is
completely up to you where you choose to store your data. There is no
default, although locations such as
/usr/local/lightdb-x/data
or
/var/lib/lightdb-x/data
are popular.
The data directory must be initialized before being used, using the program
lt_initdb
which is installed with LightDB.
If you are using a pre-packaged version
of LightDB, it may well have a specific
convention for where to place the data directory, and it may also
provide a script for creating the data directory. In that case you
should use that script in preference to
running lt_initdb
directly.
Consult the package-level documentation for details.
To initialize a database instance manually,
run lt_initdb
and specify the desired
file system location of the database instance with the
-D
option, for example:
$
lt_initdb -D /usr/local/lightdb-x/data
Note that you must execute this command while logged into the LightDB user account, which is described in the previous section.
Alternatively, you can run lt_initdb
via
the lt_ctl
program like so:
$
lt_ctl -D /usr/local/lightdb-x/data lt_initdb
This may be more intuitive if you are
using lt_ctl
for starting and stopping the
server (see Section 17.3), so
that lt_ctl
would be the sole command you use
for managing the database server instance.
lt_initdb
will attempt to create the directory you
specify if it does not already exist. Of course, this will fail if
lt_initdb
does not have permissions to write in the
parent directory. It's generally recommendable that the
LightDB user own not just the data
directory but its parent directory as well, so that this should not
be a problem. If the desired parent directory doesn't exist either,
you will need to create it first, using root privileges if the
grandparent directory isn't writable. So the process might look
like this:
root#mkdir /usr/local/pgsql
root#chown lightdb /usr/local/pgsql
root#su lightdb
lightdb$lt_initdb -D /usr/local/lightdb-x/data
lt_initdb
will refuse to run if the data directory
exists and already contains files; this is to prevent accidentally
overwriting an existing installation.
Because the data directory contains all the data stored in the
database, it is essential that it be secured from unauthorized
access. lt_initdb
therefore revokes access
permissions from everyone but the
LightDB user, and optionally, group.
Group access, when enabled, is read-only. This allows an unprivileged
user in the same group as the cluster owner to take a backup of the
cluster data or perform other operations that only require read access.
Note that enabling or disabling group access on an existing cluster requires
the cluster to be shut down and the appropriate mode to be set on all
directories and files before restarting
LightDB. Otherwise, a mix of modes might
exist in the data directory. For clusters that allow access only by the
owner, the appropriate modes are 0700
for directories
and 0600
for files. For clusters that also allow
reads by the group, the appropriate modes are 0750
for directories and 0640
for files.
However, while the directory contents are secure, the default
client authentication setup allows any local user to connect to the
database and even become the database superuser. If you do not
trust other local users, we recommend you use one of
lt_initdb
's -W
, --pwprompt
or --pwfile
options to assign a password to the
database superuser.
Also, specify -A md5
or
-A password
so that the default trust
authentication
mode is not used; or modify the generated lt_hba.conf
file after running lt_initdb
, but
before you start the server for the first time. (Other
reasonable approaches include using peer
authentication
or file system permissions to restrict connections. See Chapter 19 for more information.)
lt_initdb
also initializes the default
locale for the database instance.
Normally, it will just take the locale settings in the environment
and apply them to the initialized database. It is possible to
specify a different locale for the database; more information about
that can be found in Section 22.1. The default sort order used
within the particular database instance is set by
lt_initdb
, and while you can create new databases using
different sort order, the order used in the template databases that lt_initdb
creates cannot be changed without dropping and recreating them.
There is also a performance impact for using locales
other than C
or POSIX
. Therefore, it is
important to make this choice correctly the first time.
lt_initdb
also sets the default character set encoding
for the database instance. Normally this should be chosen to match the
locale setting. For details see Section 22.3.
Non-C
and non-POSIX
locales rely on the
operating system's collation library for character set ordering.
This controls the ordering of keys stored in indexes. For this reason,
a cluster cannot switch to an incompatible collation library version,
either through snapshot restore, binary streaming replication, a
different operating system, or an operating system upgrade.
Many installations create their database clusters on file systems (volumes) other than the machine's “root” volume. If you choose to do this, it is not advisable to try to use the secondary volume's topmost directory (mount point) as the data directory. Best practice is to create a directory within the mount-point directory that is owned by the LightDB user, and then create the data directory within that. This avoids permissions problems, particularly for operations such as lt_upgrade, and it also ensures clean failures if the secondary volume is taken offline.
Generally, any file system with POSIX semantics can be used for LightDB. Users prefer different file systems for a variety of reasons, including vendor support, performance, and familiarity. Experience suggests that, all other things being equal, one should not expect major performance or behavior changes merely from switching file systems or making minor file system configuration changes.
It is possible to use an NFS file system for storing the LightDB data directory. LightDB does nothing special for NFS file systems, meaning it assumes NFS behaves exactly like locally-connected drives. LightDB does not use any functionality that is known to have nonstandard behavior on NFS, such as file locking.
The only firm requirement for using NFS with
LightDB is that the file system is mounted
using the hard
option. With the
hard
option, processes can “hang”
indefinitely if there are network problems, so this configuration will
require a careful monitoring setup. The soft
option
will interrupt system calls in case of network problems, but
LightDB will not repeat system calls
interrupted in this way, so any such interruption will result in an I/O
error being reported.
It is not necessary to use the sync
mount option. The
behavior of the async
option is sufficient, since
LightDB issues fsync
calls at appropriate times to flush the write caches. (This is analogous
to how it works on a local file system.) However, it is strongly
recommended to use the sync
export option on the NFS
server on systems where it exists (mainly Linux).
Otherwise, an fsync
or equivalent on the NFS client is
not actually guaranteed to reach permanent storage on the server, which
could cause corruption similar to running with the parameter fsync off. The defaults of these mount and export
options differ between vendors and versions, so it is recommended to
check and perhaps specify them explicitly in any case to avoid any
ambiguity.
In some cases, an external storage product can be accessed either via NFS or a lower-level protocol such as iSCSI. In the latter case, the storage appears as a block device and any available file system can be created on it. That approach might relieve the DBA from having to deal with some of the idiosyncrasies of NFS, but of course the complexity of managing remote storage then happens at other levels.